Homework 1 Sample Solutions

provided by Alex Grounds

Extra Exercise 1. Show that for $a, b \in(0, \infty)$,

$$
\ln a-\ln b=\ln \frac{a}{b}
$$

Solution. Let's define $z=\ln a-\ln b$. Exponentiating, we get $e^{z}=e^{\ln a-\ln b}$. Using the facts that $e^{a+b}=e^{a} e^{b}$ and $e^{-a}=\frac{1}{e^{a}}$, we obtain

$$
e^{z}=e^{\ln a-\ln b}=e^{\ln a} e^{-\ln b}=\frac{e^{\ln a}}{e^{\ln b}} .
$$

Of course, since e^{x} and $\ln x$ are inverse functions, it follows that

$$
e^{z}=\frac{e^{\ln a}}{e^{\ln b}}=\frac{a}{b} .
$$

Now all we have to do is take the natural \log of both sides:

$$
\ln e^{z}=z=\ln \frac{a}{b} .
$$

But since we defined $z=\ln a-\ln b$, we have exactly what we wanted!

$$
\ln a-\ln b=z=\ln \frac{a}{b}
$$

as claimed. Note that we have implicitly used that e^{x} is a one-to-one function here. After all, if it were not, it would not have a well-defined inverse function (but it does, namely $\ln x)$.

Extra Exercise 2. Show that

$$
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}
$$

Here are the steps. Do each one of them: (a), (b), (c) are unrelated to each other, but they all get combined in part (d) to prove the result.
(a) Suppose that f and g are two differentiable functions that are inverses of each other. Show that

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
$$

(if $f^{\prime}(g(x)) \neq 0$, of course. Question: could $f^{\prime}(g(x))$ be 0 ? Think of an example or why not)
(b) Show that

$$
\frac{d}{d x} \tan x=\sec ^{2} x
$$

where recall that, by definition $\sec x=\frac{1}{\cos x}$.
(c) Show that

$$
\sec ^{2}\left(\tan ^{-1} x\right)=1+x^{2}
$$

(d) Combine (a), (b) and (c) to draw the conclusion.

Solution.

(a) Consider the function $f(g(x))$. Since f and g are inverse functions, we have $f(g(x))=x$ (this is the definition of inverse functions). If we differentiate each side of this equation, we get the following:

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)=\frac{d}{d x} x=1
$$

The first equality is simply the chain rule. Since we have assumed that $f^{\prime}(g(x)) \neq 0$, we can divide by it to obtain

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
$$

as claimed.
Note that it looks like this only works in the special case that $f^{\prime}(g(x)) \neq 0$. But this is not actually a special case at all. After all, we have that

$$
f^{\prime}(g(x)) g^{\prime}(x)=1
$$

(as we showed above). Thus, if $f^{\prime}(g(x))$ were 0 , then we would have

$$
f^{\prime}(g(x)) g^{\prime}(x)=0 g^{\prime}(x)=0=1 ?!
$$

which is obviously a contradiction.
NOTE BY MONA:
Note that if I had not specified that f and g are both differentiable the above argument would break.

Think of the following example: $f(x)=x^{3}$: this is a continuous differentiable function with continuous derivative $f^{\prime}(x)=3 x^{2}$ and continuous inverse $g(x)=\sqrt[3]{x}$. Then $f^{\prime}(g(x))=3(\sqrt[3]{x})^{2}$, which is clearly 0 for $x=0$.

Obviously, in this example we could not have $f^{\prime}(g(x)) g^{\prime}(x)=1$. Where the argument above that shows that $f^{\prime}(g(x)) g^{\prime}(x)=1$ breaks is the application of the chain rule: the chain rule only holds for the points x for which both g and f are differentiable. In this example, g is not differentiable at $x=0$.

However, in the question above you were able to apply the chain rule to $f(g(x))$ and conclude that $f^{\prime}(g(x)) g^{\prime}(x)=1$, but that's only because we assumed that both f and g are differentiable for any x.
(b) We wish to compute $\frac{d}{d x} \tan x$. Using the quotient rule, we have that $\frac{d}{d x} \tan x=\frac{d}{d x} \frac{\sin x}{\cos x}=\frac{\cos x \cdot \cos x-\sin x \cdot(-\sin x)}{\cos ^{2} x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x$.

Here we used the trigonometric identity $\sin ^{2} x+\cos ^{2} x=1$ for any x.
(c) Let's set $y=\tan ^{-1} x$. By definition, this means that $\tan y=x$. We want to show that $\sec ^{2} y=1+x^{2}$.
Note that

$$
\begin{aligned}
\tan ^{2} y+1 & =\frac{\sin ^{2} y}{\cos ^{2} y}+\frac{\cos ^{2} y}{\cos ^{2} y} & \text { we used } \tan y=\frac{\sin y}{\cos y} \text { and } 1=\frac{\cos ^{2} y}{\cos ^{2} y} \\
& =\frac{\sin ^{2} y+\cos ^{2} y}{\cos ^{2} y} & \\
& =\frac{1}{\cos ^{2} y} & \text { since } \sin ^{2} y+\cos ^{2} y=1 \text { for any } y \\
& =\sec ^{2} y &
\end{aligned}
$$

So we have shown that

$$
\tan ^{2} y+1=\sec ^{2} y
$$

for all y. Now, if we simply plug $y=\tan ^{-1} x$ into this equation, we get

$$
\begin{gathered}
\tan ^{2} y+1=\tan ^{2}\left(\tan ^{-1} x\right)+1=\left(\tan \left(\tan ^{-1}(x)\right)\right)^{2}+1=x^{2}+1 \\
=\sec ^{2} y=\sec ^{2}\left(\tan ^{-1} x\right)
\end{gathered}
$$

as claimed. Here, we used that $\tan x$ and $\tan ^{-1} x$ are inverse functions (by definition).
(d) Putting all of this together, we get that

$$
\frac{d}{d x} \tan ^{-1} x \stackrel{\text { by }(\mathrm{a})}{=} \frac{1}{(\tan)^{\prime}\left(\tan ^{-1}(x)\right)} \stackrel{\text { by }(\mathrm{b})}{=} \frac{1}{\sec ^{2}\left(\tan ^{-1}(x)\right)} \stackrel{\text { by }(\mathrm{c})}{=} \frac{1}{1+x^{2}}
$$

as claimed.

Exercise $7.1 \# 32$. Use substitution to evaluate

$$
\int \sin ^{3} x \cos x d x
$$

Solution. We make the substitution $u=\sin x, d u=\cos x d x$, so we get

$$
\int \sin ^{3} x \cos x d x=\int u^{3} d u=\frac{1}{4} u^{4}+C=\frac{1}{4} \sin ^{4} x+C
$$

Exercise $7.1 \# 42$. Assuming $g(x)$ is a continuous function whose derivative $g^{\prime}(x)$ is also continuous, use substitution to evaluate

$$
\int \frac{g^{\prime}(x)}{[g(x)]^{2}+1} d x
$$

Solution. We make the substitution $u=g(x), d u=g^{\prime}(x) d x$ (this works because $g(x)$ is continuous with a continuous derivative). Thus, we get

$$
\int \frac{g^{\prime}(x)}{[g(x)]^{2}+1} d x=\int \frac{d u}{u^{2}+1}=\tan ^{-1}(u)+C=\tan ^{-1}(g(x))+C .
$$

Here we used Extra Exercise \#2 to recognize $\tan ^{-1}(u)$ as an antiderivative of $\frac{1}{u^{2}+1}$.

